Description
Built with Code Editor
Motor learning experiments are typically run in-person, exploiting finely calibrated setups (digitizing tablets, robotic manipulandum, full VR displays) that provide high temporal and spatial resolution. However, these experiments come at a cost, not limited to the one-time expense of purchasing equipment but also the substantial time devoted to recruiting participants and administering the experiment. Moreover, exceptional circumstances that limit in-person testing, such as a global pandemic, may halt research progress. These limitations of in-person motor learning research have motivated the design of OnPoint, an open-source software package for motor control and motor learning researchers. As with all online studies, OnPoint offers an opportunity to conduct large-N motor learning studies, with potential applications to do faster pilot testing, replicate previous findings, and conduct longitudinal studies.
Creative Commons Attribution (CC BY)
Fully open! Access by URL and searchable from the Open Materials search page